Myelin repair is accelerated by inactivating CXCR2 on nonhematopoietic cells.
نویسندگان
چکیده
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS and remyelination in MS ultimately fails. Although strategies to promote myelin repair are eagerly sought, mechanisms underlying remyelination in vivo have been elusive. CXCR2 is expressed on neutrophils and oligodendrocyte lineage cells in the CNS. CXCR2-positive neutrophils facilitate inflammatory demyelination in demyelination models such as experimental autoimmune encephalomyelitis (EAE) and cuprizone intoxication. Systemic injection of a small molecule CXCR2 antagonist at the onset of EAE decreased demyelinated lesions. These results left the cellular target of the CXCR2 antagonist uncertain and did not clarify whether CXCR2 blockade prevented demyelination or promoted remyelination. Here, we show that the actions of CXCR2 on nonhematopoietic cells unexpectedly delay myelin repair. Bone marrow chimeric mice (Cxcr2(+/-)-->Cxcr2(-/-) and Cxcr2(+/-)-->Cxcr2(+/+)) were subjected to two distinct models of myelin injury. In all cases, myelin repair was more efficient in Cxcr2(+/-)-->Cxcr2(-/-) animals. Oligodendrocyte progenitor cells (OPCs) in demyelinated lesions of Cxcr2(+/-)-->Cxcr2(-/-) mice proliferated earlier and more vigorously than in tissues from Cxcr2(+/-)--> Cxcr2(+/+) animals. In vitro demyelinated CNS slice cultures also showed better myelin repair when CXCR2 was blocked with neutralizing antibodies or was genetically deleted. Our results suggest that CXCR2 inactivation permits optimal spatiotemporal positioning of OPCs in demyelinating lesions to receive local proliferative and differentiating signals. Given that CXCR2 exerts dual functions that promote demyelination and decrease remyelination by actions toward hematopoietic cells and nonhematopoietic cells, respectively, our findings identify CXCR2 as a promising drug target for clinical demyelinating disorders.
منابع مشابه
Spatiotemporal ablation of CXCR2 on oligodendrocyte lineage cells: Role in myelin repair.
BACKGROUND Residual CXCR2 expression on CNS cells in Cxcr2 (+/-) →Cxcr2 (-/-) chimeric animals slowed remyelination after both experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. METHODS We generated Cxcr2 (fl/-) :PLPCre-ER(T) mice enabling an inducible, conditional deletion of Cxcr2 on oligodendrocyte lineage cells of the CNS. Cxcr2 (fl/-) :PLPCre-ER(T) mice were e...
متن کاملSpatiotemporal ablation of CXCR2 on oligodendrocyte lineage cells
Background: Residual CXCR2 expression on CNS cells in Cxcr21/2/Cxcr22/2 chimeric animals slowed remyelination after both experimental autoimmune encephalomyelitis and cuprizoneinduced demyelination. Methods:We generatedCxcr2fl/2:PLPCre-ER(T) mice enabling an inducible, conditional deletion of Cxcr2 on oligodendrocyte lineage cells of the CNS. Cxcr2fl/2:PLPCre-ER(T) mice were evaluated in 2 demy...
متن کاملFunctional defect of peripheral neutrophils in mice with induced deletion of CXCR2.
Type 2 CXC chemokine receptor CXCR2 plays roles in development, tumorigenesis, and inflammation. CXCR2 also promotes demyelination and decreases remyelination by actions toward hematopoietic cells and nonhematopoietic cells. Germline CXCR2 deficient (Cxcr2(-/-) ) mice reported in 1994 revealed the complexity of CXCR2 function and its differential expression in varied cell-types. Here, we descri...
متن کاملBlockade of keratinocyte-derived chemokine inhibits endothelial recovery and enhances plaque formation after arterial injury in ApoE-deficient mice.
OBJECTIVE We evaluated the involvement of keratinocyte-derived chemokine (KC) in neointimal hyperplasia and endothelial repair after arterial injury. METHODS AND RESULTS Expression of KC was detected by immunohistochemistry in carotid arteries of apolipoprotein E-deficient (apoE-/-) mice not earlier than 2 weeks after wire-injury. Double immunofluorescence staining revealed a colocalization o...
متن کاملP 140: Stem Cells in Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 27 شماره
صفحات -
تاریخ انتشار 2010